Amplifier Transistors PNP Silicon

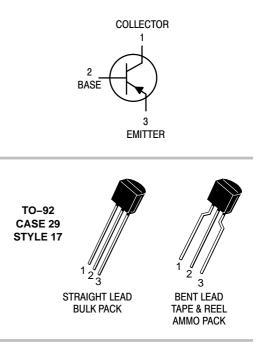
Features

• Pb–Free Packages are Available*

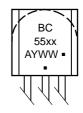
MAXIMUM RATINGS

Rating		Symbol	Value	Unit
E	3C556 3C557 3C558	V _{CEO}	-65 -45 -30	Vdc
E	3C556 3C557 3C558	V _{CBO}	-80 -50 -30	Vdc
Emitter - Base Voltage		V_{EBO}	-5.0	Vdc
Collector Current – Continuous – Peak		I _С I _{СМ}	-100 -200	mAdc
Base Current – Peak		I _{BM}	-200	mAdc
Total Device Dissipation @ $T_A = 25^{\circ}$ Derate above 25°C	C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}$ Derate above 25°C	°C	PD	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range		T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit	
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	200	°C/W	
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	83.3	°C/W	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.



ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

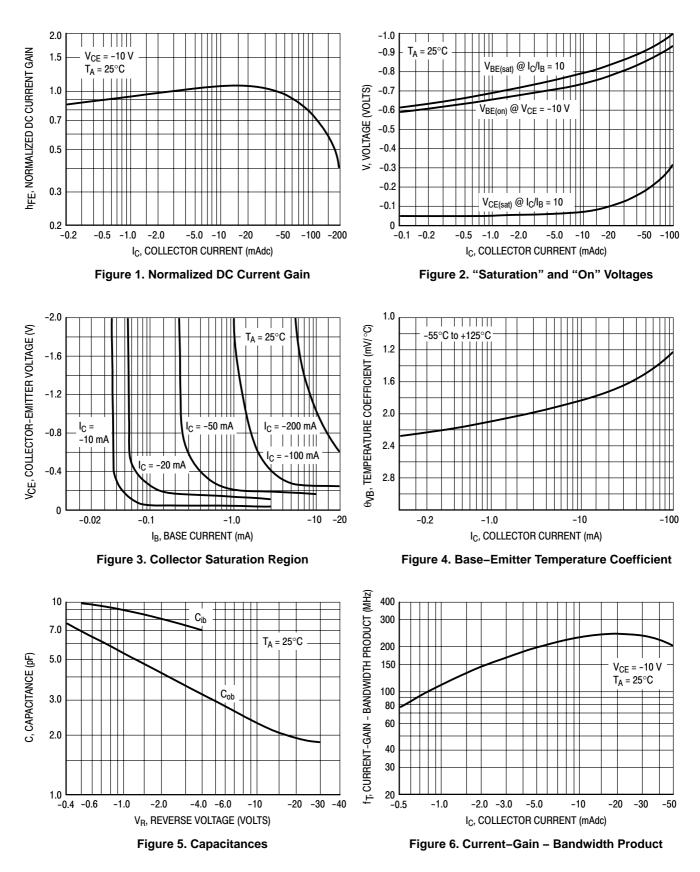
xx = 6B, 7A, 7B, 7C, or 8B A = Assembly Location Y = Year WW = Work Week = Pb-Free Package (Note: Microdot may be in either location)

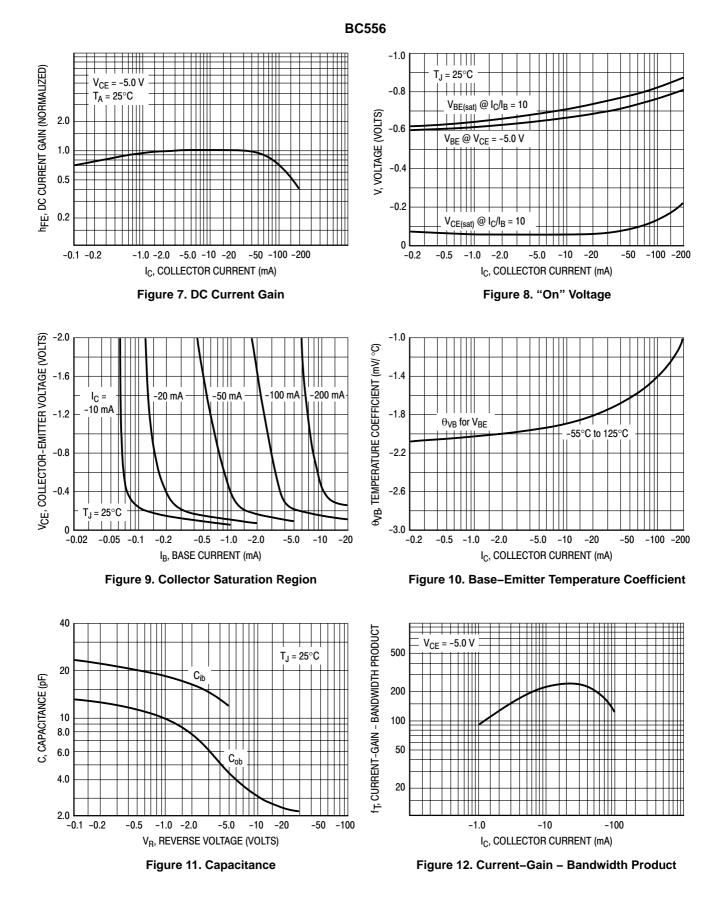
note. Microdot may be in either location

ORDERING INFORMATION

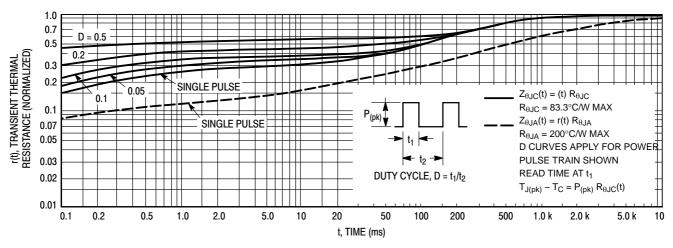
See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


BC556B, BC557A, B, C, BC558B


ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector – Emitter Breakdown Voltage $(I_C = -2.0 \text{ mAdc}, I_B = 0)$	BC556	V _{(BR)CEO}	-65	_	_	V
	BC557 BC558		-45 -30	-		
Collector – Base Breakdown Voltage	DOLLO	V _{(BR)CBO}	00			V
(I _C = -100 μAdc)	BC556 BC557		-80 -50	_	_	
	BC558		-30	-	-	
Emitter-Base Breakdown Voltage	20110	V _{(BR)EBO}	5.0			V
$(I_{E} = -100 \ \mu Adc, I_{C} = 0)$	BC556 BC557		-5.0 -5.0	_	_	
	BC558		-5.0	_	_	
Collector-Emitter Leakage Current		ICES				
$(V_{CES} = -40 \text{ V})$	BC556		-	-2.0	-100	nA
$(V_{CES} = -20 \text{ V})$	BC557 BC558		_	-2.0 -2.0	-100 -100	
(V _{CES} = −20 V, T _A = 125°C)	BC556		-	-	-4.0	μΑ
	BC557		-	-	-4.0	
	BC558		-	-	-4.0	
ON CHARACTERISTICS			1	1	1	
DC Current Gain	A Carias Davias	h _{FE}		00		-
$(I_{C} = -10 \ \mu Adc, \ V_{CE} = -5.0 \ V)$	A Series Device B Series Devices		_	90 150	_	
	C Series Devices		-	270	_	
$(I_{C} = -2.0 \text{ mAdc}, V_{CE} = -5.0 \text{ V})$	BC557		120	-	800	
	A Series Device		120	170	220	
	B Series Devices C Series Devices		180 420	290 500	460 800	
$(I_{C} = -100 \text{ mAdc}, V_{CE} = -5.0 \text{ V})$	A Series Device		-	120	-	
	B Series Devices		-	180	-	
	C Series Devices		-	300	-	
Collector – Emitter Saturation Voltage ($I_C = -10$ mAdc, $I_B = -0.5$ mAdc)		V _{CE(sat)}		-0.075	-0.3	V
$(I_C = -10 \text{ mAdc}, I_B = see \text{ Note } 1)$			_	-0.3	-0.6	
$(I_{\rm C} = -100 \text{ mAdc}, I_{\rm B} = -5.0 \text{ mAdc})$			-	-0.25	-0.65	
Base – Emitter Saturation Voltage		V _{BE(sat)}				V
$(I_{C} = -10 \text{ mAdc}, I_{B} = -0.5 \text{ mAdc})$			-	-0.7	-	
$(I_{\rm C} = -100 \text{ mAdc}, I_{\rm B} = -5.0 \text{ mAdc})$.,	-	-1.0	_	
Base–Emitter On Voltage ($I_C = -2.0 \text{ mAdc}$, $V_{CE} = -5.0 \text{ Vdc}$)		V _{BE(on)}	-0.55	-0.62	-0.7	V
$(I_{C} = -10 \text{ mAdc}, V_{CE} = -5.0 \text{ Vdc})$			-	-0.7	-0.82	
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain - Bandwidth Product		f _T				MHz
(I _C = –10 mA, V _{CE} = –5.0 V, f = 100 MHz)	BC556		-	280	-	
	BC557		-	320	-	
Output Connector of	BC558		-	360	-	- 5
Output Capacitance ($V_{CB} = -10 \text{ V}, I_C = 0, f = 1.0 \text{ MHz}$)		C _{ob}	-	3.0	6.0	pF
Noise Figure		NF				dB
$(I_{C} = -0.2 \text{ mAdc}, V_{CE} = -5.0 \text{ V},$	BC556		-	2.0	10	
$R_{S} = 2.0 \text{ k}\Omega, \text{ f} = 1.0 \text{ kHz}, \Delta \text{f} = 200 \text{ Hz})$	BC557 BC558		_	2.0 2.0	10 10	
Small–Signal Current Gain	20000	h _{fe}				_
$(I_{\rm C} = -2.0 \text{ mAdc}, V_{\rm CE} = 5.0 \text{ V}, f = 1.0 \text{ kHz})$	BC557	''te	125	_	900	_
	A Series Device		125	-	260	
	B Series Devices		240	-	500	
	C Series Devices		450		900	


1. $I_C = -10$ mAdc on the constant base current characteristics, which yields the point $I_C = -11$ mAdc, $V_{CE} = -1.0$ V.

BC556B, BC557A, B, C, BC558B

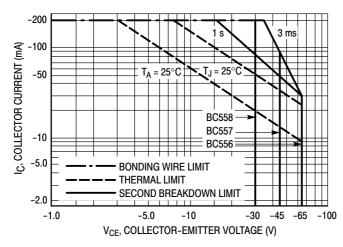
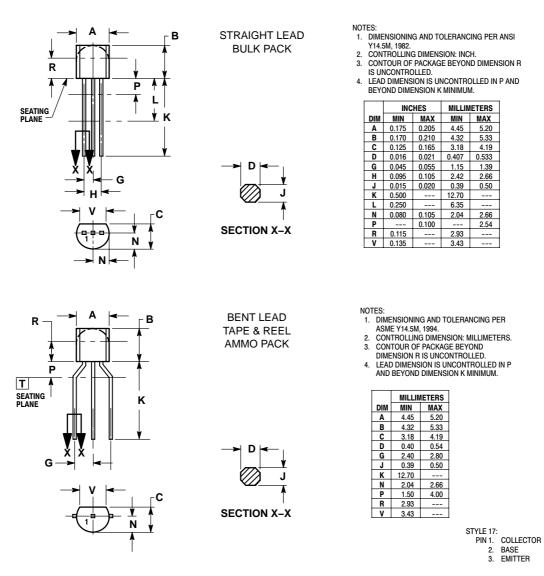


Figure 14. Active Region – Safe Operating Area

The safe operating area curves indicate I_C-V_{CE} limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve.

The data of Figure 14 is based upon $T_{J(pk)}$ = 150°C; T_C or T_A is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided $T_{J(pk)} \leq 150°C$. $T_{J(pk)}$ may be calculated from the data in Figure 13. At high case or ambient temperatures, thermal limitations will reduce the power than can be handled to values less than the limitations imposed by second breakdown.

BC556B, BC557A, B, C, BC558B


ORDERING INFORMATION

Device	Package	Shipping [†]		
BC556BG	TO-92 (Pb-Free)	5000 Units / Bulk		
BC556BZL1G	TO-92 (Pb-Free)	2000 / Ammo Box		
BC557AZL1G	TO-92 (Pb-Free)	2000 / Ammo Box		
BC557BG	TO-92 (Pb-Free)	5000 Units / Bulk		
BC557BRL1	TO-92	2000 / Tape & Reel		
BC557BRL1G	TO-92 (Pb-Free)	2000 / Tape & Reel		
BC557BZL1G	TO-92 (Pb-Free)	2000 / Ammo Box		
BC557CG	TO-92 (Pb-Free)	5000 Units / Bulk		
BC557CZL1G	TO-92 (Pb-Free)	2000 / Ammo Box		
BC558BRLG	TO-92 (Pb-Free)	2000 / Tape & Reel		
BC558BRL1G	TO-92 (Pb-Free)	2000 / Tape & Reel		
BC558BZL1G	TO–92 (Pb–Free)	2000 / Ammo Box		

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 **ISSUE AM**

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications. intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, ad distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, and claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

Phone: 81-3-5773-3850

For additional information, please contact your local Sales Representative